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Abstract. In this paper, the problem of the online modeling of non-
linear speech signals is addressed. In particular, the goal of this work
is to provide a nonlinear model yielding the best tradeoff between per-
formance results and required computational resources. Functional link
adaptive filters were proved to be an effective model for this problem,
providing the best performance when trigonometric expansion is used
as a nonlinear transformation. Here, a different functional expansion is
adopted based on the Chebyshev polynomials in order to reduce the over-
all computational complexity of the model, while achieving good results
in terms of perceived quality of processed speech. The proposed model
is assessed in the presence of nonlinearities for both simulated and real
speech signals.
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1 Introduction

In the recent years, a widespread availability of commercial hands-free speech
communication systems has occurred, also due to the development of immer-
sive speech communication techniques [4,7]. However, such devices often mount
low-cost components, which may affect the quality of the perceived speech. In
particular, poor-quality loudspeakers, vibrations of plastic shells, D/A convert-
ers and power amplifiers may introduce a significant amount of nonlinearity in
speech signals, especially during large signal peaks.

In online learning applications related to hands-free speech communications,
such as nonlinear acoustic echo cancellation (NAEC) and active noise control
(ANC), linear-in-the-parameters (LIP) nonlinear filters represent an effective
and flexible solution [6, 8–10,12, 18]. However, the modeling and compensations
by LIP nonlinear filters may require a large number of nonlinear elements, which
involve a high computational load that may represent a problem of real-time
applications like NAEC.

In order to address this problem, in this paper, we propose a LIP nonlinear
filter that provides the best tradeoff between performance results and required
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computational resources. In particular, we take into account the nonlinear func-
tional link adaptive filters (FLAFs) [6], which is based on a nonlinear expansion
of the input signal by the so-called functional links [11, 13, 16], and an adaptive
filtering of the transformed signal in cascade.

One of the most important advantages of the FLAF is its flexibility, since
it is possible to set the different parameters of the FLAF individually in order
to fit the model at best for a specific application. In the design of an FLAF,
an important choice is the number of functional links to be adopted in the
model. This choice is strictly related to the nonlinearity degree introduced by the
unknown system and with the chosen type of functional expansion. Therefore,
in order to reduce the computational complexity we directly aim at designing a
suitable and efficient functional expansion block to be used for the modeling of
nonlinear speech signals.

In particular, Chebyshev functional links are assessed within NAEC problems
and compared with other classic functional expansions. Performance is evaluated
in terms of both error-based criteria and speech quality measures, while consid-
ering the minimum possible computational load. Results are achieved over both
simulated and real data and show the effectiveness of Chebyshev functional links
to be used for a low-complexity FLAF model.

The paper is organized as follows: the FLAF-based model for the modeling
of speech signals is introduced in Section 2, while Chebyshev functional links
and their properties are described in Section 3. Results are discussed in Section
4 and, finally, in Section 5 our conclusions are drawn.

2 A Functional Link-Based Nonlinear Model for NAEC

The FLAF model is purely nonlinear, since the adaptive filter receives as input
a transformed nonlinear signal. However, very often in acoustic speech signal
processing, there is also a linear component to be modeled, as in the case of
the presence of an acoustic impulse response in NAEC. To this end, we adopt
a filtering scheme based on the FLAF that includes both linear and nonlinear
filtering, called split functional link adaptive filter (SFLAF) [6].

The SFLAF architecture, depicted in Fig. 1, involves a linear branch and a
nonlinear branch in parallel. The former is nothing but a linear adaptive filter
totally aiming at modeling the linear components of the system to be identified.
On the other hand, the nonlinear branch is a nonlinear FLAF. The output
signal of the SFLAF is obtained from the sum of the outputs of the two parallel
branches:

y [n] = yL [n] + yFL [n] = xT
nwL,n−1 + gT

nwFL,n−1. (1)

The error signal is then obtained as:

e [n] = d [n]− y [n] (2)

where d [n] is the desired signal that may includes any background noise. The
error signal (2) is used to adapt both the adaptive filters. In (1), xn ∈ R

M =
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Fig. 1. The split functional link adaptive filter.

[

x [n] x [n− 1] . . . x [n−M + 1]
]T

is the input to the filter on the linear branch,
with M being the length of the input vector. Also, in (1), the vector gn ∈

R
Me =

[

g0 [n] g1 [n] . . . gMe−1 [n]
]T

is the expanded buffer, i.e., the output of
the functional expansion block (FEB) whose length is Me ≥ Mi.

Both the adaptive filters wL,n and wFL,n in (1) can be updated by using any
linear adaptive algorithm. Here, we use a normalized least-mean square (NLMS)
algorithm [17], so that:

wL,n = wL,n−1 + µL

xne [n]

xT
nxn + δ

(3)

wFL,n = wFL,n−1 + µFL

gne [n]

gT
ngn + δ

(4)

where µL and µFL are the step-size parameters and δ is a regularization factor.

3 Chebyshev Functional Link Expansion

3.1 Functional expansion block

One of the most important part in the FLAF-based model is the FEB, which
contains a series of functions satisfying universal approximation properties. Such
functions, called “functional links”, are collected in a chosen set Φ = {ϕ

0
(·) ,

ϕ
1
(·) , . . . ,ϕ

Q−1
(·)
}

, with Q being the number of functional links. The FEB
receives the first Mi ≤ M samples of xn, which are transformed and expanded
in a higher-dimensional space by the chosen set of functional links, thus yielding
the nonlinear expanded buffer gn:
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g [n] = ϕ
0
(x [n])

...

g [n−Q+ 1] = ϕ
Q−1

(x [n])

...

g [n−Me + 1] = ϕ
Q−1

(x [n−Mi + 1])

where P is the order of the functional link.

3.2 Chebyshev polynomial expansion

The chosen set of functional links must satisfy the universal approximation prop-
erties, and it can be a subset of orthogonal polynomials, such as Chebyshev,
Legendre, Laguerre and trigonometric polynomials [2, 5, 13, 19] or just approx-
imating functions, such as sigmoid functions [11, 15]. Among such functional
expansions, trigonometric polynomials represent one of the most popular expan-
sions, especially for applications involving audio and speech input signals [6,16],
since at best of their capabilities they provide the best performance results [5].
However, in this paper we focus on Chebyshev polynomial expansion to reduce
the computational load.

Chebyshev polynomials are widely used in different fields of application due
to their powerful nonlinear approximation capabilities. These properties were
proved in [13, 19] within an artificial neural network (ANN), which also shows
faster convergence than a multi-layer perceptron (MLP) network. Chebyshev
polynomials involve functions of previously computed functions, thus increasing
their effectiveness in dynamic problems. Moreover, being derived from a power
series expansion, Chebyshev functional links may approximate a nonlinear func-
tion with a very small error near the point of expansion. On the other hand,
the drawback is that, far from the point of expansion, the error often increases
rapidly. Compared with other power series, Chebyshev polynomials show lower
computational complexity and higher efficiency, when the polynomial order is
rather low.

Considering the i-th input x [n− i] of the nonlinear buffer, with i = 0, . . . ,Mi,
the Chebyshev polynomial expansion can be expressed as:

ϕ
j
(x [n− i]) = 2x [n− i]ϕ

j−1
(x [n− i])−ϕ

j−2
(x [n− i]) (5)

for j = 0, . . . , P − 1. It can be noted from (5) that the number of Chebyshev
functional links is equal to the expansion order, i.e., Q = P . Initial values in (5)
(i.e., for j = 0) are:

ϕ
−1

(x [n− i]) = x [n− i]

ϕ
−2

(x [n− i]) = 1.
(6)
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3.3 Properties of Chebyshev polynomials

Chebyshev polynomials are endowed with some interesting properties [3]. They
are orthogonal in R1 with respect to the a weighting function 1/π

√

1− x2 [n− i]:

∫ 1

−1

ϕ
j
(x [n− i])ϕ

k
(x [n− i])

1

π
√

1− x2 [n− i]
dx =







0, j 6= k
1, j = k = 0
1/2, j = k 6= 0

. (7)

For any x [n− i] ∈ R1, also ϕ
j
(x [n− i]) ∈ R1, with values comprises in the

range [−1, 1]. Therefore, ϕ
j
(x [n− i]) are equiripple functions in R1.

Moreover, any polynomial with order P , p (x [n− i]), can be derived as a
linear combination of Chebyshev polynomials [3]:

p (x [n− i]) =
P−1
∑

j=0

cjϕj
(x [n− i]). (8)

The last property is important since a linear combination of Chebyshev polyno-
mials can arbitrarily well approximate any real continuous function f (x [n− i]).
This can be proved via the Stone-Weierstrass theorem [14], as shown in [3].

Moreover, the approximation of a continuous function f (x [n− i]) with a
linear combination of Chebyshev polynomials, p (x [n− i]), up to a degree P is
very close to a min-max approximation [3]. Indeed, the approximation error is:

ǫ [n− i] = f (x [n− i])− p (x [n− i]) =

+ inf
∑

j=P

cjϕj
(x [n− i]). (9)

For a continuous and differentiable function, the coefficients cj converge to 0
rapidly, and therefore, ǫ [n− i] ≈ cPϕP

(x [n− i]), which corresponds to an
equiripple function.

Some of the above properties are proved in [3] for Chebyshev polynomials.

3.4 Analysis of the computational complexity

We briefly report the computational complexity of the Chebyshev functional link
expansions with respect to other standard expansions, like trigonometric and
Legendre series expansions. In order to provide a fair view of the computational
resources required by the expansions, we do not consider additional cost of the
SFLAF structure but we focus only on the operations made by the FEB.

The Chebyshev functional link expansion in (5) involves for each iteration
2PMi multiplications and PMi additions. Similarly, the complexity of Legendre
and trigonometric functional link expansions is derived in [5]. In terms of the
expanded buffer length, we can consider that Me = PMi for Chebyshev and Leg-
endre functional link expansions and Me = 2PMi for trigonometric expansion. A
comparison of the computational complexity, in terms of multiplications only, is
summarized in Table 1. If we fix the expanded buffer length Me and we consider
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Table 1. Computational cost comparison of different functional link expansions in
terms of multiplications.

Expansion Type No. Multiplications

Chebyshev Polynomial Expansion 2Me

Legendre Polynomial Expansion 4Me

Trigonometric Series Expansion Me/2 + P

that P << Me, then it is easy to note that the trigonometric expansion in-
volves the smallest number of multiplications. Therefore, in order to achieve the
best tradeoff between performance and complexity using Chebyshev functional
link, we necessary need to obtain superior performance than trigonometric func-
tional links. As an alternative, we should try to obtain the same performance of
trigonometric functional links but with a smaller number of nonlinear elements.

4 Experimental Results

We assess the proposed Chebyshev SFLAF within NAEC scenarios, comparing
results with those obtained by trigonometric and Legendre series expansions.
For each experiment we show the best possible SFLAF configuration, in terms
of the chosen parameters, yielding the optimal tradeoff between performance
and computational complexity.

We evaluate the performance results in terms of the echo return loss enhance-

ment (ERLE), which describes the amount of echo canceled by the microphone
signal, and it is defined as:

ERLE [n] = 10 log10

(

E
{

d2 [n]
}

E {e2 [n]}

)

(10)

The ERLE denotes how much echo signal is canceled, but this does not always
correspond to a real signal enhancement in terms of perceived quality. There-
fore, besides using the ERLE, we also consider another quality measure suitably
designed for speech signals that may denote how “well” an SFLAF model pro-
duces a reliable estimate of the echo signal. In particular, we consider one of
the most used objective measures for the speech quality evaluation that is the
perceptual evaluation of speech quality (PESQ) [1], which estimates the overall
loudness difference between the original signal and its estimation. Such signals
are equalized to a reference listening level and then processed by a filter having
a similar response to a standard telephone handset. An auditory transform is
then applied to obtain the loudness spectra. The loudness difference between the
two signals is averaged over time and frequency in order to achieve a prediction
of subjective quality rating [5]. The PESQ score may be comprise in the range
[1.0, 4.5], where 4.5 indicates the best possible quality.
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Fig. 2. Performance comparison in terms of ERLE between SFLAFs with different
expansions for speech input affected by a soft-clipping nonlinearity.

Table 2. Performance comparison in terms of PESQ and processing time between
SFLAFs with different expansions for speech input affected by a soft-clipping nonlin-
earity.

SFLAF Type Me PESQ Sec.

Chebyshev SFLAF PMi = 600 3.765 5.339

Legendre SFLAF PMi = 1200 2.868 7.876

Trigonometric SFLAF PMi = 1200 3.582 5.672

4.1 Simulated NAEC scenario

The first experiment is conducted in a simulated teleconferencing environment
with reverberation time of T60 ≈ 150 ms, in which the acoustic impulse response
between the loudspeaker and the microphone is measured at 8 kHz sampling
rate. A desktop computer equipped with an i3 CPU at 3.07 GHz is used for
simulations. Female speech signal is used as input. Additive Gaussian noise is
considered at the microphone signal, with 20 dB of signal-to-noise ratio (SNR).
The simulated distortion applied to the female speech is a symmetrical soft-
clipping nonlinearity, aiming at simulating a classic loudspeaker saturation effect,
described by [5]:

x [n] =







2
3ζx [n] for 0 ≤ |x [n]| ≤ ζ

sign (x [n]) 3−(2−|x[n]|/ζ)2

3 for ζ ≤ |x [n]| ≤ 2ζ
sign (x [n]) for 2ζ ≤ |x [n]| ≤ 1

(11)

where the clipping threshold 0 < ζ ≤ 0.5 determines the nonlinearity level. Here,
we consider a strong distortion, provided by using ζ = 0.1 in (11).

We set the step sizes at µL = µFL = 0.5, and Mri = M for all the SFLAF but
we use the minimum possible expansion order for Chebyshev, trigonometric and
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Legendre series such that results can be comparable in terms of the ERLE. In
particular, we have chosen P = 2 for both Chebyshev and trigonometric SFLAF
and P = 4 for Legendre SFLAF. Such results are shown in Fig. 2 where it is
possible to see that Chebyshev SFLAF provides the best performance keeping the
complexity contained. For better readability of the figures, we show a window
of 3 out of 10 seconds of the ERLE behavior. This result is more evident by
evaluating the quality measures in terms of the PESQ, which are reported in
Table 2, where it can be also seen that Chebyshev SFLAF achieves the best
PESQ score, while adapting the lowest number of nonlinear elements and, thus,
involving the lowest computational time.

4.2 Real NAEC scenario

In a second experiment, we evaluate the performance of the proposed method
on real data from a classic scenario of acoustic echo cancellation, i.e. a hands-
free desktop teleconference. For this experiment we consider a typical office room
with a relatively low level of background noise, which guarantees sufficiently high
signal-to-noise ratio (SNR). In this way it is possible to evaluate the proposed
canceller fairly, thus avoiding external interferences that could require further
processing modules (e.g., double-talk detectors). For the same reason, we used a
high-quality microphone (AKG C562 CM), so that the most significant nonlin-
earities in the system are those produced by the loudspeaker. To this end, 40 cm
far from the microphone, we placed a low-cost commercial loudspeaker, capable
of introducing significant distortions. The input signal is male speech recorded
at 16 kHz sampling frequency. The length of the experiments is 20 seconds.
We consider a typical volume level of a quiet speech conversation, when usu-
ally loudspeaker distortions are mild and they cannot be perceived by the user.
However, they do affect the echo cancellation, thus degrading the performance
in the absence of a nonlinear modeling.

For this experiment, we use the same setting of the previous one, but with
different filter lengths. In particular, we use M = 200 for the filter on the linear
path, andMi = 50 for the functional expansion. Therefore, the number of param-
eters for the filter on the nonlinear path is Me = PMi = 100 for the Chebyshev
SFAF, and Me = 200 for both the trigonometric and Legendre SFLAFs. Results
in terms of the ERLE are shown in Fig 3, showing a window of 3 out of 20
seconds, in which Chebyshev SFLAF clearly shows the best performance with
respect to the other methods. This result is confirmed by the PESQ scores in Ta-
ble 3, where Chebyshev SFLAF outperforms the other methods, while showing
the lowest computational complexity.

5 Conclusion

In this paper, a Chebyshev functional link adaptive filter has been introduced
as a low complexity model for the modeling of distorted speech signals. The
proposed model exploits the properties of Chebyshev polynomial expansions
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Fig. 3. Performance comparison in terms of ERLE between SFLAFs with different
expansions for speech input in a real NAEC scenario.

Table 3. Performance comparison in terms of PESQ and processing time between
SFLAFs with different expansions for speech input in a real NAEC scenario.

SFLAF Type Me PESQ Sec.

Chebyshev SFLAF PMi = 100 3.857 2.132

Legendre SFLAF PMi = 200 2.742 3.626

Trigonometric SFLAF PMi = 200 3.124 2.951

and takes advantage of the fact that it achieves acceptable performance even
with low expansion order, thus resulting the best possible functional link-based
model when a low computational complexity is required by a specific problem,
like NAEC. Performance are evaluated in terms of an error-based measure, i.e.,
the ERLE, but also in terms of a speech quality measure, i.e., the PESQ. Overall
results proved that Chebyshev SFLAF is the best performing method when
the minimum possible computational resources are available for the nonlinear
modeling.
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